A Posteriori Error Estimates for Approximate Solutions of the Barenblatt-Biot Poroelastic Model

نویسندگان

  • Jan M. Nordbotten
  • Talal Rahman
  • Sergey I. Repin
  • Jan Valdman
چکیده

Abstract. We are concerned with the Barenblatt-Biott model in the theory of poroelasticity. We derive a guaranteed estimate of the difference between exact and approximate solutions expressed in a combined norm that encompasses errors for the pressure fields computed from the diffusion part of the model and errors related to stresses (strains) of the elastic part. Estimates do not contain generic (mesh-dependent) constants and are valid for any conforming approximation of pressure and stress fields. This is a shortened version of the joint paper [1] with J. M. Nordbotten (Bergen), T. Rahman (Bergen) and S. I. Repin (St. Petersburg).

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Equivalent a posteriori error estimates for spectral element solutions of constrained optimal control problem in one dimension

‎In this paper‎, ‎we study spectral element approximation for a constrained‎ ‎optimal control problem in one dimension‎. ‎The equivalent a posteriori error estimators are derived for‎ ‎the control‎, ‎the state and the adjoint state approximation‎. ‎Such estimators can be used to‎ ‎construct adaptive spectral elements for the control problems.

متن کامل

Partially Saturated Flow in a Composite Poroelastic Medium

(Preliminary Report.) The model formulation and existence theory is described for diffusion of a barotropic fluid through a partially saturated poroelastic composite medium consisting of two components. This includes the Barenblatt-Biot doublediffusion model of elastic deformation and laminar flow in a fissured medium, such as consolidation processes in a system of fissures distributed througho...

متن کامل

A posteriori $ L^2(L^2)$-error estimates with the new version of streamline diffusion method for the wave equation

In this article, we study the new streamline diffusion finite element for treating the linear second order hyperbolic initial-boundary value problem. We prove a posteriori $ L^2(L^2)$ and error estimates for this method under minimal regularity hypothesis. Test problem of an application of the wave equation in the laser is presented to verify the efficiency and accuracy of the method.

متن کامل

Plane Strain Deformation of a Poroelastic Half-Space Lying Over Another Poroelastic Half-Space

The plane strain deformation of an isotropic, homogeneous, poroelastic medium caused by an inclined line-load is studied using the Biot linearized theory for fluid saturated porous materials. The analytical expressions for the displacements and stresses in the medium are obtained by applying suitable boundary conditions. The solutions are obtained analytically for the limiting case of undrained...

متن کامل

An Operator Splitting Approach for the Interaction Between a Fluid and a Multilayered Poroelastic Structure

We develop a loosely coupled fluid-structure interaction finite element solver based on the Lie operator splitting scheme. The scheme is applied to the interaction between an incompressible, viscous, Newtonian fluid, and a multilayered structure, which consists of a thin elastic layer and a thick poroelastic material. The thin layer is modeled using the linearly elastic Koiter membrane model, w...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Comput. Meth. in Appl. Math.

دوره 10  شماره 

صفحات  -

تاریخ انتشار 2010